Computing and Verifying Depth Orders

Mark de Berg, Mark Overmars, Otfried Schwarzkopf

RUU-CS-91-41
November 1991

Utrecht University

5 (.2 Department of Computer Science
% é’ Padualaan 14, P.O. Box 80.089,
K nys 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Computing and Verifying Depth Orders

Mark de Berg, Mark Overmars, Otfried Schwarzkopf

Technical Report RUU-CS-91-41
November 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Computing and Verifying Depth Orders*

Mark de Bergt = Mark Overmars' Otfried Schwarzkopf?

Abstract

A depth order on a set of objects is an order such that object a comes be-
fore object @’ in the order when a lies behind a’, or, in other words, when a is
(partially) hidden by a’. We present efficient algorithms for the computation
and verification of depth orders of sets of n rods in 3-space. Our algorithms
run in time O(n4/3+¢), for any fixed ¢ > 0. If all rods are axis-parallel, or, more
generally, have only a constant number of different orientations, then the sort-
ing algorithm runs in O(nlog®n) time and the verification takes O(nlog? n)
time. The algorithms can be generalized to handle triangles and other poly-
gons instead of rods. They are based on a general framework for computing
and verifying linear extensions of implicitly defined binary relations.

1 Introduction

Hidden surface removal is an important problem in computer graphics. In a typical
setting, we are given a set of non-intersecting polyhedral objects in 3-space and a
view point, and we want to compute which parts of the objects can be seen from
the view point.

An efficient way of solving this problem is the painter’s algorithm; see e.g. [12].
In this algorithm one tries to ‘paint’ the objects in a back to front order onto the
screen. Thus the objects in the front are painted on top of the objects in the back,
resulting in a correct view of the scene. Such a back to front ordering is called a depth
order of the set of objects. Note that a depth order does not always exist, since there
can be cyclic overlap among the objects, as is the case for the three triangles shown
in Figure 1. A closely related approach uses a binary space partition tree to obtain
a displaying order for the objects in a scene [10]. A binary space partition cuts the

*This research was supported by the ESPRIT Basic Research Action No. 3075 (project AL-
COM). The first and second author were also supported by the Dutch Organization for Scientific
Research (N.W.0.).

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The
Netherlands.

4nstitut fiir Informatik, Fachbereich Mathematik, Freie Universitat Berlin, Arnimallee 2-6,
‘W1000 Berlin 33, Germany.

Figure 1: Cyclic overlap among triangles.

objects in such a way that there is a depth order in any direction. Unfortunately,
the number of fragments and, hence, the size of the resulting BSP tree, can be as
large as §2(n?) [17]. Hence, this approach can be very wasteful, if there is no cyclic
overlap in the viewing direction.

The view of a scene consists of a subdivision of the viewing plane into maximal
connected regions in each of which (some portion of) a single object can be seen, or no
object is seen. Sometimes it is necessary to compute a combinatorial representation
of this so-called wvisibility map. Note that the painter’s algorithm does not give us
such a combinatorial representation. The combinatorial complexity of the visibility
map of a set of objects with n edges in total varies between O(1) and Q(n?). Hence,
it would be nice to have an output-sensitive algorithm, that is, an algorithm whose
running time is dependent on the complexity of the visibility map. Almost all
output-sensitive algorithms known to date require that a depth order on the objects
is given, see e.g. [11, 13, 16, 18]. Only the recent algorithms of [8, 9] do not need a
depth order. The implementation of the latter algorithms, however, is much easier
when a depth order is known.

It is thus important to be able to compute depth orders efficiently. This problem
was studied by Chazelle et al. [5]. When the objects are lines in 3-space, they noted
that a depth order can be obtained by a standard sorting algorithm, because any
two lines can be compared (assuming no two have parallel projections). If there is
cyclic overlap, however, then the outcome of the sorting algorithm is not a valid
depth order. Verifying whether a depth order is valid is no trivial matter though;
in [5], Chazelle et al. presented an O(n*/3+¢) time algorithm to verify a given depth
order of a set of lines. When the objects are rods in 3-space, the problem becomes
much harder, since not every pair of rods can be compared. For this case, the best
algorithm that was known runs in time O(nlogn + k), where k is the number of
intersections in the projection plane, or, in other words, the number of pairs that
can be compared directly [5, 15]. Note that k can be ©(n?) and, hence, that the
worst-case running time of these algorithms is ©(n?). Indeed, many researchers
thought that there was not much hope to obtain a subquadratic algorithm. Even

for the case of axis-parallel rods, it was an open problem to find a depth order in
o(n?) time [18].

In this paper we show that a depth order for a set of rods in 3-space can be
computed in subquadratic time. More specifically, we give an algorithm that com-
putes a depth order in time O(n*/3+¢). We also present an algorithm which verifies
a given order in O(n*/3*¢) time. When the rods are c-oriented, that is, they have
only c different orientations for some constant ¢, then the sorting algorithm runs in
O(nlog®n) time and verification takes O(nlog? n) time. Note that axis-parallel rods
are 3-oriented. The results can be generalized to depth orders for sets of triangles,
or other polygons, instead of rods.

The algorithms that we give are surprisingly simple. They are based on a general
framework for computing a linear extension of a relation (S, <). It is easy to compute
an extension in time that is linear in the number of pairs that are related; to this end
one sorts the directed graph G = (S, E) topologically, where (a, a’) € E if and only if
a < a'. This is the approach taken in [5, 15] to sort a set S of n rods: first compute all
pairs of rods that are related—this can be done in O(nlog n+ k) time by computing
all intersections in the projection plane—, and then sort the corresponding graph
G in O(n + k) time. Note that if (S, <) does not contain a cycle then the sorting
will succeed, otherwise some cycle will be detected in the graph G. We show that
it is not necessary to compute the full graph corresponding to (S, <). All that is
needed is to have a data structure that answers the following question: Given an
element a € S, return a predecessor of a and a successor of q, if they exist. The data
structure should allow for the deletion of an element a in S in sublinear time. In
cases where the relation is given implicitly—such as for depth orders—this is often
possible. Our algorithm uses an interesting form of divide-and-conquer, where the
divide-step does not need to be balanced. In fact, the more unbalanced it is, the
better the running time of the algorithm.

The rest of this paper is organized as follows. In Section 2 we present our general
framework for computing linear extensions of a relation (.5, <), and in Section 3 we
give an algorithm to verify a given order. In Section 4 we show how to use these
results to compute or verify a depth order for a set of rods (or triangles, or polygons)
in 3-space. We make some concluding remarks in Section 5.

2 Computing Linear Extensions

Let < be a binary relation defined on a set S of n elements. Note that < is not
necessarily a partial order, since we do not assume transitivity. This will be useful
in our application. In this section it is shown how to compute a linear extension
of (S, <) or to decide that (S, <) contains a cycle. Thus we want to compute an
order ay,...,a, on the elements in S such that a; < a; implies i < j. The algorithm
that we will give for this problem needs a data structure D4 for storing a subset

S’ C S, that can return a predecessor in S’ of a query element a € S. More formally,
QUERY(a, D) returns an element a’ € S’ such that a’ < a, or NIL if there is no such
element. We call such a query a predecessor query. Similarly, we need a structure
D, for successor queries. To make our algorithm efficient, the structures should
allow for efficient deletions of elements from S, and the preprocessing time should
not be too high.

Let us define <, to be the transitive closure of <, and >. to be the transitive
closure of >. The basis strategy of the algorithm is divide-and-conquer: we pick
a pivot element ap, € S, partition the remaining elements into a subset Sy of
elements a that must come before @piy in the order, because a <. apiy, and a subset
Sy of elements that must come after ay;, in the desired order, because Qpiv < a,
and recursively sort these sets. Note that not every pair of elements is comparable
under <.. Hence, except for the subsets S; and S, there is a third subset Sy of
elements that cannot be compared to api, under <,. This subset should be sorted
recursively as well. To find the subsets S and S, efficiently, the data structures D
and D, are used. Consider the subset S;. By querying D4 with element Apiy, WE
can find an element a such that a < ay,. We delete a from Dy, to avoid reporting
it more than once, and query once more with @piy. Continuing in this manner until
the answer to the query is NIL, we can find all elements a € S such that a < Apiy-
However, we want to find all elements a such that @ <. ap,. Thus we also have
to query D with the elements a that we have just found, and query with the new
elements that we find, and so forth. Whenever we find an element, it is deleted from
D, and we query with it until we have found all predecessors of it (that have not
been found before). This way we can compute the set S, with a number of queries
in Dy that is linear in the size of S4. Notice that when we find Gpiy as an answer to
a query, then there must be a cycle in the relation. The subset Sy can be found in
a similar way, using the data structure D,. The subset Sx contains the remaining
elements.

There is one major problem with this approach: we cannot ensure that the
partitioning is balanced, that is, that the sets S, Sy, and Sy have about the same
size. Normally, an unbalanced divide-and-conquer algorithm has a quadratic worst-
case running time. Fortunately, we can circumvent this if we make the following two
observations. First, we note that we need not treat the subset S~ separately. We
can put the elements of Sy in either S or S,., as long as we do it consistently, that
is, as long as we put all elements in the same set. It seems that this only makes
things worse, because the partitioning gets more unbalanced. But now we observe
that it is enough to find the smaller of the two subsets S and S,.. The remaining
elements—which can be elements of Sy—are all put into one set. It is possible to
find the smaller of the two subsets S, and S, —without computing the complete
larger set as well—with a number of queries that is linear in its size, by doing a
‘tandem search’: alternatingly, find an element of S« and an element of S, , until
the computation of one of the two subsets has been completed. Thus we partition

S into two subsets in time that is dependent on the the size of the smaller of the
two subsets. This means that the more unbalanced the partitioning is, the faster it
is performed, leading to a good worst-case running time for the algorithm. There is
one problem left that we have not addressed so far: we cannot afford to build the
data structures that we need for the recursive call for the large set from scratch.
Fortunately, we can obtain these structures from the ones that we have at the end
of the tandem search, by reinserting and deleting certain elements.

The algorithm for computing an ordering on (S, <) first builds the data structures
D< and D, on the set S, and then calls the procedure ORDER, with the set S and
these two data structures as arguments. Below follows a detailed description of
this procedure, whose output is a linear extension of (S, <) if one exists, and which
detects a cycle otherwise. The algorithm maintains two queues Q. and Q,, that
store the elements of S resp. S, for which we have not yet found all predecessors
resp. successors. The procedure ENQUEUE adds an element to a queue. Similarly,
DEQUEUE deletes an element from the queue. An element a is deleted from the
data structure D by calling DELETE(a, D<); a deletion from D, is performed with
a similar call. To delete all elements in a set A, we simply write DELETE(A, D).

ORDER(S,D«,Dy)
1. if |S| > 1 then perform steps 2-6 else stop (S is already sorted).
2. Make S« @ and S, « O, and initialize two empty queues Q« and Q,.
3. Pick an arbitrary pivot element ayiy € S; ENQUEUE(apiv, @<); ENQUEUE(apiv, @5)-
4. while both @, and Q. are not empty
do (x Compute a new element a’ € S4. *)
a — DEQUEUE(Qx); a'— QUERY(a, Dy).
if o’ # NIL
then if a’ = ap,
then Stop and report that there is a cycle.
else ENQUEUE(a, Q«) ; ENQUEUE(d’, @Q); DELETE(d/, Dy).
S<(— S* U {a'}.
Compute a new element a’ € S,. in a similar way, using Q, and D,..
5. if Q. is empty (hence, S, is the smaller set)
then (x Compute the data structures for the recursive calls.)
Restore D, to the situation before step 4.
DELETE(S< U {apiv}, Dy); DELETE(@piv, D<).
Build new predecessor and successor structures 7’4 and D’y for the set Sk.
(% Sort S and S — S4 — {apiv} recursively. x)
ORDER(S,D'4, D'y).
ORDER(S — {apiv} — S<,D<,Dy).
else Compute the data structures for the recursive calls as above, reversing the
roles of S¢,D and Sy, D,., and sort S, and S — Sy — {apiv} recursively.
6. Concatenate S, apiy and Sy to form the ordered list for S.

The following lemma proves the correctness of our algorithm.

Lemma 1 Procedure ORDER outputs a linear eztension of (S, <) if it ezxists, and
detects a cycle otherwise.

Proof: It is straightforward to see that the algorithm never claims to have found a
cycle that does not exist. It remains to show that if ORDER outputs a list a,,...,a,
then this list is a correct ordering. Assume for a contradiction that a; > a; for
some ¢ < j. Then, at some stage of the algorithm, a; must have been put into Sy,
whereas a; was put into Sy, or a; was put into S¢ and a; was the pivot element a;,,
or a; was the pivot element ap;, and a; was put into S,. The second and third case
both imply that there is a cycle containing a,,, and we can easily verify that Step
3 never fails to discover a cycle containing the pivot element. We thus consider the
first case: If Q. is empty after Step 3 then all predecessors of a; have been found,
including a;. Hence, a; would have been put into S, instead of S,.. Similarly, if Q,
is empty then a; would have been put into S,.. O

Next we prove a bound on the running time of the algorithm. Let us for the sake of
simplicity assume that the query time of D4 and the query time of D, are equal, and
let this time be denoted by Q(n). Similarly, let the time to build these structures
on n elements be B(n), and let D(n) denote the time for a deletion.

Lemma 2 The procedure ORDER runs in O ((B(n) + n(Q(n) + D(n))) log n) time.
The running time reduces to O (B(n) + n(Q(n) + D(n))) if the function B(n)/n +
Q(n) + D(n) is at least polynomially related to n.

Proof: Since all other operations in the procedure can be done in constant time,
the time that we spend is dominated by the operations on the structures D4 and
D, . Furthermore, if the size of the smaller of the two subsets S; and Sy is m, then
we perform at most 2m + 2 queries and deletions on these structures in Step 3 of the
procedure. Restoring a data structure to a situation from the past, which we do in
Step 4, can be done without extra asymptotic overhead if we record all the changes.
Finally, we perform m deletions in Step 4, and we build new data structures for
the smaller set. This adds up to B(m) + O(1 + m)(Q(n) + D(n)) in total for the
partitioning.

Next we argue that m < n/2 if the partitioning is successful, that is, if no
cycle is found at this point. Suppose that m > n/2. Then there must be an
element a € S¢ N S,.. But this means that ap;, will be found as a predecessor or a
successor (whichever happens first) and a cycleis detected. Trivially, an unsuccessful
partitioning happens at most once, giving a one-time cost of O(n(Q(n) + D(n))).

It follows that the total running time T'(n) can be bounded by the recursion

T(n) <, max, B(m) +O(1 +m)(Q(n) + Dln)) + T(m) + T(n = m — 1)
which solves to the claimed time. This can most easily be seen by the following
argument: At every partitioning, charge B(m)/m + O(1)}(Q(n) + D(n)) to each of

6

the m elements in the smaller set and to ay;,. We assume that B(n) is at least linear,
so we can bound the charge on a single element by ¢(n) := O(B(n)/n+Q(n)+ D(n)).
But every time an element gets charged, the size of the set that contains the element
has at least been halved, so the total charge on a single element can be bounded by
c(n) + ¢(nf2) + c(n/4) + - - -. This sums to O(c(n)) if ¢(n) is at least polynomially
related to n, giving a total of O(nc(n)). If that is not the case, we can observe that
an element gets charged at most logn times, so we can bound the total time by
O(ne(n)log n). a

Combining the two lemmas above, we obtain the following theorem.

Theorem 1 The procedure ORDER runs in O ((B(n) + n(Q(n) + D(n)))log n) time,
and outputs an ordered list if (S, <) does not contain a cycle or finds a cycle oth-
erwise. The running time reduces to O (B(n) + n(Q(n) + D(n))) if the function
B(n)/n+ Q(n) + D(n) is at least polynomially related to n.

Remark: With a little extra effort, the algorithm can output a witness cycle, when
(S, <) cannot be ordered. To this end, we keep track of the successor (predecessor)
of each element that we put into S¢ (S,). This extra information enables us to
‘walk back’ when we find a,,, in Step 3 of the algorithm, and report the elements of
the cycle.

3 Verifying Linear Extensions

In this section it is shown how to verify a given order for a relation (5, <). Notice
that different orders can be valid for (S, <), so it does not suffice to compute a
valid order and compare it to the given order. The algorithm uses a straightforward
divide-and-conquer approach. It relies on the existence of a data structure D for
predecessor queries. Unlike in the previous section, however, this data structure need
not be dynamic. The algorithm we describe next has as input a list £ = {ay,...,a,},
of which we have to test whether it corresponds to a valid order. It will report that
L is not sorted or run quietly when £ is a valid ordering for (S, <).

VERIFY(L)

if |£]>1

then Let £, = {a1,...,an/2)} and £2 = {a}n/2)41,---,an}.
Build a data structure D for predecessor queries on £,.
for i =1 to |n/2]
do if QUERY(a;, D4)# NIL

then Stop and report that £ is not sorted

VERIFY(L,); VERIFY(L,)

The correctness of the procedure is obvious. If £ does not correspond to a valid
order, then, by definition, there are elements a;, a; such that a; < a; and ¢ > j. Now

7

either : > |n/2| and j < |n/2], or i,j < |n/2], or 4,5 > [n/2]. The first case is
tested by querying with the elements of £, in the data structure D, and the second
and third possibility are tested with the recursive calls for £; and £,, respectively.
The following theorem is now straightforward. As before, B(n) denotes the time
needed to build the structure D on a set of n elements, and Q(n) denotes the query
time.

Theorem 2 The procedure VERIFY verifies in O((B(n)+nQ(n))logn) time whether
a list L corresponds to an order for (S,<). The running time of the procedure re-
duces to O (B(n) + nQ(n)) if the function B(n)/n + Q(n) is at least polynomially
related to n.

Remark: Observe that if the procedure reports that £ is not ordered, then it can
report a witness pair a;, a; of elements such that i < j and a; < a;. If the structure
D is dynamic, then the algorithm can even report all conflicting pairs. When we
test an element a; € £,;, we just remove each element a; € £, that conflicts with
a; from D, and report the pair a;, a;, until no more conflicting elements are found.

Then we reinsert the elements of £; into D, and test the next element of £; in the
same way.

4 Application to Depth Orders
4.1 Depth Orders for Rods

Let S be a set of n rods in 3-space, and let d be the viewing direction. (The
adaptation of the algorithms to ‘perspective depth orders’, that is, depth orders
with respect to a point, is straightforward.) We want to find a depth order on S
for direction d. In other words, we want to find a linear extension of the relation
(S, <), where @ < a’ when there is a ray into direction d that first intersects rod
a’ and then intersects rod a. When a < a', we say that a lies behind a’, or that a'
lies in front of a. Observe that < is not a transitive relation. To apply Theorem 1,
we need dynamic data structures that store a set S’ C S Of rods and enable us to
find a rod in S’ lymg behind resp. in front of a query rod. Define the curtain of
a rod into direction d to be the set of points ¢ in 3-space such that there is a ray
into direction d that first intersects a and then intersects q. If we want to find a
rod in S’ lying in front of a query rod a, we just have to check whether a intersects
one of the curtains hanging from the rods in §’, and report the rod holding that
curtain. See Figure 2. Finding a rod lying behind a query rod can be done in
a similar way. Agarwal and Matousek [1, 2] have shown that intersection queries
in a set of n curtains can be answered in time O(n!/3) with a structure that uses
O(n4/3+‘) space and has an update time of O(n!/3+¢), However, their update time
is amortized. This is dangerous for us if we restore the data structure to a situation
from the past in step 5 of procedure ORDER, since we could perform an expensive

8

&l

Figure 2: Rod a lies behind rod &' and, hence, intersects its curtain.

deletion too often. We can circumvent this problem by reinserting the elements,
instead of restoring the data structure. If we do this, then the amortized update
time guarantees us that the total amount of time taken by all the updates is good,
leading to the desired running time. If both the rods holding the curtains and the
query rods are c-oriented, that is, they have only c different orientations for some
constant ¢, then queries can be answered in time O(log? n) with a structure using
O(nlogn) space and with O(log? n) update time, see de Berg [7]. Combining this
with Theorem 1 gives us the following result.

Theorem 3 Given a set S of n rods in 3-space and a viewing direction J: one can
compute a depth order on S for direction d, or decide that there is cyclic overlap
among the rods, in time O(n*/3+¢), for any fized ¢ > 0. If the rods are c-oriented
then the time bound improves to O(nlog®n).

To verify a given depth order for a set of rods in 3-space, we use the results of
Section 3. In the general case, we implement the data structures for predecessor
and successor queries in the same way as we did when computing depth orders: we
use Agarwal and Matoudek’s structure for intersection queries in curtains, which
has O(n!/3) query time, and O(n*/3+¢) preprocessing time. In the c-oriented case,
we can use a more efficient structure than we used for computing depth orders:
because the structure need not be dynamic, we can use the structure of de Berg and
Overmars [9], which has O(logn) query time, and O(nlogn) preprocessing time.
We immediately obtain the following theorem.

Theorem 4 It is possible to verzfy a depth order on a given set S of n rods in 3-
space for a viewing direction d in time O(n#/3t¢), for any fized ¢ > 0. If the rods
are c-oriented then the time bound improves to O(nlog? n).

4.2 Depth Orders for Triangles

To extend our results to triangles instead of rods, we only need to adapt the data
structures for predecessor and successor queries. Let us discuss the structure for
successor queries; to obtain a structure for successor queries we only have to reverse
the roles of ‘behind’ and ‘in front of’.

A triangle ¢ is in front of another triangle ¢’ if and only if (i) an edge of ¢ is in
front of an edge of t/, (ii) t is in front of a vertex of ¢, or (iii) a vertex of ¢ is in
front of t’. (A vertex v is in front of a triangle ¢’ if there is a ray into the viewing
direction that first intersects v and then intersects ¢.) We already know how to
find the triangles ¢ that satisfy condition (i) for a query triangle t. The triangles
satisfying conditions (ii) and (iii) can be found as follows. Consider condition (i),
and assume, to simplify the description, that the viewing direction is the negative
z-direction. Project all vertices onto the zy-plane, and let be the projection onto
the zy-plane of a query triangle t. To find a vertex in front of ¢ we select all vertices
whose projection is contained in 7 in a small number of groups; for such a group we
can think of ¢ as being a plane, and the question becomes that of reporting a point
in a half-space in 3-space. The latter query can be answered in O(n'/?) time, using
the half-space emptiness structure of Agarwal and Matou3ek [1]. This structure
uses O(n%/3+¢) preprocessing, and has O(n!/3+¢) update time. The selection can
be done using a three-level partition tree: each level filters out those vertices lying
on the appropriate side of the line through one of the three edges of . We use
the partition trees of Matousek [14], which allow for queries and updates in time
O(n!/3) resp. O(n'/3+¢), and which uses O(n*/3+¢) preprocessing time and space.
Because the preprocessing and the query time in such a multi-level partition tree
are essentially determined by the least efficient level, the preprocessing time, query
time and update time of the total structure remain O(n#/3+¢), O(n/?) and O(n'/3+*),
respectively. See [1, 3, 6, 14] for further details on the analysis of multi-level partition
trees. The structure for condition (iii) is the same (up to some dualizations) as the
structure for (ii) that we just described. We conclude that a dynamic structure
for predecessor queries in a set of triangles exists with O(n'/3) query and O(n!/3+¢)
update time, using O(n*/3+¢) preprocessing time and space. As before, these bounds
are amortized, implying that we should reinsert the elements in step 5 of procedure
ORDER, instead of restoring the data structure to a situation from the past.

For the c-oriented case, where the edges of the triangles have only c different
orientations for some constant ¢, we can use structures from [7]. There it is shown
that a vertex in front of a c-oriented query triangle can be found in O(log® n) time,
with a structure that uses O(nlog?n) space and has O(log®n) update time. A
triangle in front of a query vertex can be found in O(log? nloglogn) time, using
O(nlog®n) space and with O(log? nloglogn) update time. Furthermore, finding
a vertex in front of an axis-parallel rectangle can be done with a structure whose
query and update time are O(log? n).

The above, combined with Theorems 1 and 2 leads to the following result.

10

Theorem 5 Given a set S of n triangles in 3-space and a viewing direction J,
one can compute a depth order on S for direction d, or decide that there is cyclic
overlap among the triangles, in time O(n*/3+¢), for any fized € > 0. If the triangles
are c-oriented then the time bound improves to O(nlog*n), and if the objects are
azis-parallel rectangles then the algorithm takes O(n log® nloglog n) time.

To verify a given depth order for an arbitrary set of triangles, we use the same
structures as for computing a depth order. In the c-oriented case, however, we can
save some logarithmic factors by using static structures instead of dynamic ones. In
the algorithm of Section 3 we have to test whether the triangles in a list £, do not
lie in front of any triangle in a list £,. Testing whether there is an edge of a triangle
in £, that lies in front of an edge of a triangle in £; can be done in O(nlogn)
time, as in Subsection 4.1. To test for conflicts corresponding to conditions (ii), we
build a structure on the triangles in £, that reports the first triangle that is hit by a
query ray starting from infinity into the viewing direction. Next, we shoot rays from
infinity into the viewing direction towards each vertex of all triangles in £,; when
we know the first triangle that is hit by the ray towards a certain vertex, we can
decide if there is any triangle in front of the vertex. There exists a structure that
answers these ray shooting queries in O(log n) time, after O(nlog n) preprocessing
[9]. Hence, in O(nlogn) time we can decide if there is a triangle in £, that is in
front of some vertex of a triangle in £;. To test condition (iii) we build a similar
structure on the triangles in £; (only this time for query rays into the opposite

viewing direction), and we query with vertices of triangles in £;. This leads to the
following theorem.

Theorem 8 It is possigle to verify a given depth order on a set S of n triangles in
8-space for a direction d in time O(n*/3+¢), for any fized € > 0. If the triangles are
c-oriented then the time bound improves to O(nlogn).

4.3 Extension to Polygons

Consider the case where we want to compute a depth order for a set of polygons
in 3-space, instead of a set of triangles. Let n be the total number of vertices of
the polygons. First, we triangulate every polygon, which can be done in O(n) time
in total [4]. Observe that one polygon is behind another polygon if and only if
one of the triangles in the triangulation of the first polygon is behind one of the
triangles of the second polygon. Hence, we can use the same data structures as
before to find predecessors and successors. However, if the polygons do not have
constant complexity, then there is a slight problem: the triangles that correspond to
the same polygon must stay together in the ordering, so when we find one triangle
as a predecessor or successor we have to report the other triangles as well. This
is problematic, because the number of other triangles can be large. Suppose that
during our tandem search we suddenly have to add a very large polygon to one

11

of the subsets; if we find out in the next step that the other subset is complete,
then we have spent a lot of time that we cannot charge to the smaller subset. An
elegant solution to this problem can be obtained if we realize that we can choose
any particular pivot element we like. Hence, we can choose the polygon with the
largest complexity as pivot element. The tandem search for the sets S and S, now
proceeds as follows. We find successors and predecessors using the data structures
for triangles. However, when we find a large polygons for, say, S, we first allow S,
to catch up. Thus we search for successors until the complexity of S,.—that is, the
total number of vertices of all polygons in S,—is greater than the complexity of S«.
When this happens, we start querying for predecessors again, and so forth, until one
of the subsets is completed. This way the extra work that we have to do, caused
by adding a large polygon to what turns out to be the larger set, is bounded by
the time spent on one polygon. Since the pivot polygon is chosen to be the largest
polygon in the set, we can charge this extra work to the pivot polygon. Clearly,
each polygon is charged at most once this way, because in the recursive calls we do
not consider the pivot element anymore. Thus the asymptotic running time of the
algorithm remains the same, and we have the following theorem.

Theorem 7 Given a set S of polygons in 8-space with n vertices in total, and a
viewing direction J, one can compute a depth order on S for direction J, or decide
that there is cyclic overlap among the polygons, in time O(n*/3+¢), for any fized
e > 0. If the polygons are c-oriented then the time bound improves to O(nlog*n),

and if the polygons are azis-parallel then the algorithm takes O(n log® nloglogn)
time.

The adaptation of the verification procedure to polygons is fairly straightforward,
and we leave it as an (easy) exercise to the reader.

Theorem 8 It is possible to verify a given depth order on a set S of polygons in
$3-space with n vertices in total, for a viewing direction d, in time O(n4/3t¢), for

any fized € > 0. If the polygons are c-oriented then the time bound improves to
O(nlog®n).

5 Concluding Remarks

We have shown that it is possible to compute a depth order for a set of rods in
3-space in subquadratic time. More specifically, a depth order can be computed in
O(n*/3+¢) time in the general case, and in O(n log® n) time in the c-oriented case.
It is also possible to verify a given depth order, and the results can be extended
to polygons instead of rods. Our algorithms are based on a general framework to

compute or verify a linear extension of an implicitly defined binary relation, which
might have other applications as well.

When a depth order is needed as input to a hidden surface removal algorithm,
we are not done if we detect a cycle: the cycles should be removed by cutting the

12

objects into smaller pieces. Moreover, we would like to use as few cuts as possible.
As mentioned in the introduction, binary space partitions are a way of cutting the
objects to obtain a depth order, but there is no guarantee that the number of pieces
in this scheme is small [17]. We leave the computation of the minimum (or a small)
number of cuts as an open problem. See [5] for an initial study of these problems.

References

[1]

2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

P.K. Agarwal and J. Matousek, Ray Shooting and Parametric Search, Techn.
Report CS-1991-22, Dept. of Computer Science, Duke University, 1991.

P.K. Agarwal and J. Matousek, Dynamic Half-Space Range Reporting and Its
Applications, manuscript, 1991.

P.K. Agarwal and M. Sharir, Applications of a New Space Partitioning Scheme,
Proc. Workshop on Algorithms and Data Structures, 1991, pp. 379-391.

B. Chazelle, Triangulating a Simple Polygon in Linear Time, Proc. 31st IEEE
Symp. on Foundations of Computer Science, 1990, pp. 220-230.

B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M. Sharir and
J. Snoeyink, Counting and Cutting Cycles of Lines and Rods in Space, Proc.
81st IEEE Symp. on Foundations of Computer Science, 1990, pp. 242-251.

B. Chazelle, M. Sharir and E. Welzl, Quasi-Optimal Upper Bounds for Simplex
Range Searching and New Zone Theorems, Proc. 6th ACM Symp. on Compu-
tational Geometry, 1990, pp. 23-33.

M. de Berg, Dynamic Output-Sensitive Hidden Surface Removal for c-Oriented
Polyhedra, Techn. Report RUU-CS-91-6, Dept. of Computer Science, Utrecht
University, 1991.

M. de Berg, D. Halperin, M.H. Overmars, J. Snoeyink and M. van Kreveld,
Efficient Ray Shooting and Hidden Surface Removal, Proc. 7th ACM Symp. on
Computational Geometry, 1991, pp. 21-30.

M. de Berg and M.H. Overmars, Hidden Surface Removal for Axis-Parallel
Polyhedra, Proc. 81st IEEE Symp. on Foundations of Computer Science, 1990,
pp. 252-261.

H. Fuchs, Z. Kedem and B. Naylor, On Visible Surface Generation by A Priori
Tree Structures, Computer Graphics (SIGGRAPH ’80 Conference Proceedings),
pp. 124-133.

13

